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All the quantitative structure-activity relationships (QSAR) which so far have been 
practically observed can be simple interpreted within the framework of kinetic formalism. 
Based on the assumption that the drug action can be modeled by the steady-state kinetic 
scheme which includes only reactions of the f'trst order, and the rate constants of all the 
elementary reactions can be formally described by means of linear free energy relationships 
(LFER), an algorithm for the derivation of nonlinear QSA relationships is proposed. It 
is shown that all the possible rate equations for the kinetic schemes of a given complexity 
can be subdivided into a limited number of classes according to the type of concentration 
polyhedron. Namely, if one assumes that the kinetic scheme includes no more than n 
species, then there exist p(n) - 1 general rate equations. Based on such classification, the 
possibility of f'mding the necessary QSA relationship proceeding only from the experimental 
data on the final biological responses is discussed. 

1. Introduction 

Among the variety of approaches used to analyze the physico-chemical and 
biological properties of compounds, the application of linear free energy relationships 
(LFER) principle still remains the most attractive since potentially it can provide 
clear information about the physico-chemical nature of the processes analyzed. So 
far, the most excellent results have been achieved in the application of the LFER 
principle for correlation of rate or equilibrium constants of simple chemical reactions. 
In particular, the extrathermodynamical approach became attractive in recent years 
when Taft, Kamlet and Abraham derived the complete set of solvatochromic parameters, 
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which in their linear combination were able to describe quantitatively almost all 
types of the single-stage physico-chemical processes occurring in condensed phase 
(see, for example, refs. [1-3]). 

The major problem of the application of the LFER principle for biological 
data correlation is conditioned by the complexity of biological systems. It was long 
recognized that the final biological response of drug action results from various 
branched or consecutive elementary reaction steps; each of these steps may be rate- 
determining for any new biologically active compound. Therefore, the linear 
relationships between the final biological response and various compound predictor 
variables may be obtained only in very particular cases, e.g. when the same rate- 
determining step defines the biological action of all the analyzed compounds. On 
the other hand, the precise mechanism of drug action at the molecular level is never 
known; therefore, it is impossible to derive theoretically the required structure- 
activity relationship which will certainly describe the biological action of the compounds 
under investigation. 

Because of these difficulties, so far the purely empirical methodology has 
been used by pharmaceutical chemists to derive the necessary nonlinear QSA 
relationships. It implied a simple visualization of the structure-activity dependence 
by plotting activity against the certain predictor variables in the two-dimensional 
space, and subsequent fitting of the obtained curve into some empirical function. 
Thus, it was long recognized that most of the structure-activity curves are composed 
of two portions, ascending and descending, both usually being linear. In 1964, 
based on the hypothetical "random walk" model of drug action, Hansch proposed 
to fit such "two-portion" curves into the parabolic function [4-6] 

A = C 0 + ClX + C2 x2, (1) 

where A represents the rate of biological response or the pharmacokinetic constant, 
Co, C1, C2 are the regression coefficients, and x is the hydrophobic parameter of the 
variable substituent or the whole drug molecule. In 1976, Kubinyi generalized 
Hyde's equilibrium model [7] and McFarland's probability model [8], and proposed 
the use of the bilinear equation [9,10] 

A = C O + ClX + C 2 log(1 + loc3+x). (2) 

Although parabolic and bilinear functions were initially derived based on the more 
or less realistic models of drug action, their application to the correlation of the 
biological data in most of the practical cases must be considered as purely empirical. 

First, in order to derive parabolic and bilinear equations, a number of over- 
simplifications have been made. For example, the final biological response was 
assumed to result simply from a number of consecutive partitions (compartments) 
between various organic/water phases of the drug molecule, and subsequent single- 
stage interaction of the drug molecule with the biological receptor. Obviously, such 
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drug action modeling within the consecutive multicompartment framework represents 
only a very narrow case among all the possible interpretations of the biphasic 
structure-activity dependencies. Further, it was assumed that the rate or equilibrium 
constants between various water/organic systems are strictly interrelated, while the 
recent results of Taft, Kamlet and Abraham [1-3] indicate that such relationships 
may be observed only for the substrate homologous series, or in the case of very 
close organic/water systems. 

Second, although initially these equations were derived only for the activity- 
lipophilicity correlations, they were extensively used to correlate the connectivity 
indexes [11,12], steric [13], electronic and semiempirical quantum chemical 
parameters [14]. 

Due to these uncertainties, only very conditional physico-chemical meaning 
could be attributed to the optimized regression coefficients in eqs. (1) and (2). 
Consequently, a number of other empirical equations were proposed to describe the 
above-mentioned two-portion curves, e.g. the hyperbolic [11,12], moduli [13], and 
even sinus [12] functions were used, 

A = Co + C1x + C2/x, (3) 

A = Co + C1 Ix - C21, (4) 

A = Co + C1 sin x. (5) 

Among other proposed functions, the Kubinyi function (2) proved to give the most 
reliable fits of experimental data, since it could correctly describe the non-symmetric 
and bilinear nature of the visualized structure-activity curves. (The curvilinear nature 
of certain types of empirical functions has been extensively criticized in refs. [9, 10].) 

In 1978, Franke summarized certain cases where the QSA relationships were 
stated to be described by curves composed of three and four linear or curvilinear 
parts, and proposed to fit them either into the fourth-order power series (6) or into 
the complex five-part function (7) [15], 

A = Co + Clx + C2 X2 + C3 x3 + C4 x4, (6) 

I C o+Clx, if x < x  I, 

C 2 + C 3 x + C 4  x2, i f x  I < x < x I ,  

A= C 5+C6x+C7 x2, if xII < x < x  m, 

C a + C9x, if XrnX < Xrv, 

Clo + C 11 x+C12 x2, if X>Xrv. 

(7) 

Earlier, the third-order power series were used to establish QSA relationships by 
Hansch and CIayton [16]. 
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It is clear that all these QSA relationships cannot provide the necessary 
information about the biological processes analyzed because one never can be sure 
that the optimized function correctly represents the biological mechanism of drug 
action. On the other hand, all the above-mentioned visualized structure-activity 
dependencies could be simply interpreted within the framework of kinetic formalism. 
Thus, the bilinear nature of the two-portion type SA curves can be intuitively 
considered to be conditioned by the presence of only two rate-determining elementary 
reactions, the LFER principle being applicable to both of them. Analogously, the 
complex curves composed of three and four linear or curvilinear parts could be 
simply explained by the drug action modeling by the four-stage kinetic scheme. 
Then the following questions reasonably arise: how complex can QSA relationships 
be if we assume that the biological action of the compound is described by a certain 
kinetic scheme? Are there limited or unlimited kinds of possible QSA relationships? 
Is it possible to reproduce the kinetic scheme of drug action and, hence, to choose 
the necessary QSA relationship proceeding only from the experimental data on the 
final biological responses? The purpose of the present paper is to obtain at least 
partial answers to these questions. Here, we will consider only the steady-state 
kinetic schemes assuming that all the reactions included are of the first order, since 
only in this case the required structure-activity relationships can be obtained in the 
form of explicit algebraic equations. 

2. Mathematical description of the kinetic model and analysis of its properties 

Suppose that the biological action of a set of bioactive compounds can be 
described by the same kinetic scheme. Let this kinetic scheme include n internal 
species X1, X2 . . . . .  X,, which may represent either kinetically important components 
of the biological system (e.g. various biological target receptors, enzymes produced 
by the biological system and catalyzing various side reactions of drug molecules, 
etc.) or various forms of drug molecules (e.g. drug molecules in the administration, 
membrane or receptor phases, drug molecules bound to the target receptors by the 
covalent or noncovalent bonds, etc.). The concentrations of internal species Xi(t ) 
have a significant time variation and therefore are dynamical variables. Suppose 
that the rate of biological response is proportional to the rate of X,,+I species 
production, i.e. to og(t) = ~Xn+l(t)/~t. Our aim is to find the dependence of 09(0 on 
the drug molecule predictor variables. Generally, these dependencies can be derived 
in the form of explicit algebraic expressions only if all the reactions included in the 
kinetic scheme are of the first order, and all the rate constants are related to the drug 
molecule predictor variables by the certain functions. 

Thus, let all the elementary reactions in our scheme be of the first or the 
pseudo-first order. For the sake of simplicity, assume that all the reactions included 
in the kinetic scheme are of the following forms: 

Xi k<i,y.s) > Xj + Xs, Xi k<i,o,s> > X~, 
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where l < i < n ,  l < j < s < n + l ,  j , s ~ i ,  and k( i , j , s )  is a rate constant  
(k(i, j, s) > 0). (It will be readily seen that all the considerations below, including 
theorems, are true for any kinetic scheme of  the first order.) Below, we will consider 
that the rate constants of  all the elementary reactions can be formally related to a 
certain number  of  drug molecule predictor variables by means of  the linear free 
energy relationships 

k 

log k(i, j, s) = ao(i, j, s) + ~_~ ai(i, j, s)x i. (8) 
i=1 

Here, a0, a~ . . . . .  ak are the linear regression coefficients, and xl . . . . .  Xk represent 
the complete  set of  drug molecule parameters such that their linear combinat ion can 
describe any single-stage reaction occurring in the biological system. There may be 
rate constants which do not depend on drug molecule  properties; then formally all 
ai=O, i =  1 . . . . .  k. 

The rate law of  drug action will be described by the following system of  
differential equations: 

fXl(t)  

X2(t) 
0 f ( t )  ] ~t = l~ X(t), ~'(t) = i ' (9) 

~,Xn(t) 
= Ilkijlli.j=l.2 ..... n, 

where 

kq = 

i - 1  n + l  

~_~ k(j, u, i) + 2k(j, i, i) + ~ k(j, i, u), 
u=O,u~j u=i+l,u~j 

- ~ k( j ,u,v) ,  
O<u,u~j<n+l 

i f i  ~: j ,  

i f / =  j. 

(10) 

The rate of  biological response is proportional to 

° 9 ( t ) = ~  I 2 k ( u ' n + l ' n + l ) + u = l  u=o,v~u~ k ( u ' v ' n + l ) )  Xu(t)" 

Obviously, co(t) is a function of  substrate parameters xl . . . . .  xk and the t ime 
of  its action t. However, the biological activity of  a given compound is usually 
characterized by its initial concentration causing the standard biological response 
(e.g. EDs0, LD5o, MIC, MBC, etc.) at a fixed t ime moment .  These experimental  
data are informative enough if we suppose that they are t ime independent,  i.e. 
] C.0(tl) - C0(t2) I < e for any tl, t2 E [0; + oo) (here, e is an experimental  error). At least, 
this inequality must  be satisfied for tl, t2 ~ [to; +oo). In the chemical sense, this 
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means that the experimental da ta  have been obtained under the conditions near the 
steady state. Mathematically, this inequality is satisfied if there exists limt__*** 09(t) = 09". 
Therefore, we suppose that there exist limt_~**Xi(t) = Xi ,  i = 1, 2 . . . . .  n. Then 

I~*=0,  ~*= 

X1 

X2 

x." 

09* = 2k(u, n + 1, n + 1) + k(u, v, n + 1) X u. 
u = l  v=O,u~u 

(11) 

(12) 

09* is the experimentally obtained value, and 09* > 0. For convenience, and without 
loss of  generality, we shall assume that all X~/> 0. Indeed, U = {u[ 1 < u _< n, X~ = 0}. 
Written in the form 

kijX j = 0 ,  i = l, 2 . . . . .  n, (13) 
j = l  

where kij are defined in eq. (10), the system (11) does not contain the symbols 
k(u,  v, w), where u ~ U. If  U = cr n (here and below, o'n = { 1, 2 . . . . .  n}), then 09* = 0. 
Conversely, if U ~ on, then for v E on\ U, XS > 0, and k(u, p, w) = 0, if  u or w E U 
(see eqs. (10) and (13)). Thus, all the symbols X*, u E U, k(u, v, w), where u, v, or 
w ~ U ,  can be excluded from eqs. (11) and (12), and the kinetic scheme with 
n - cardU species can be considered (cardU is the number of  elements in the set U). 

Let F be a stoichiometric matrix M × (n + 1) of  the kinetic scheme, where M 
is the number of  elementary reactions. For the row (71, 72 . . . . .  7n+ 1) corresponding 
to the r e a c t i o n X i - ~ a X j + b X s ,  i , j = 1 , 2  . . . . .  n, s = 1 , 2  . . . . .  n + l ,  i ~ j ,  i ~ s ,  
j ~: s, we have 

O, i fu  ~ {i , j , s} ,  

-1, i fu  = i, 
~'u = 

a, i fu  = j ,  

b, i f u =  s. 

Hence, every row of  matrix F contains only three non-zero elements ( - 1 ,  1, 1) or 
two non-zero elements ( - 1 ,  1, or - 1 ,  2). Let F1 be a submatrix of  F, obtained by 
striking out the last column f rom F. Note that according to (10), 

n 

det • = ~ YI  k(i, u i, vi)F(Ul, Vl, u2, D 2 . . . . .  u n, vn), (14) 
ul,vigi i = 1  
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where F(ul, vl, u2, v2 . . . . .  u,, v,,) is the determinant n x n consisting of  the rows 
of  F1 which correspond to the reactions k(1, ul, vl), k(2, u2, vz) . . . . .  k(n, u,, v,). It 
is clear that for every i, 1 _< i < n, at least one k(i, ul, vi) > 0, i.e. the kinetic scheme 
includes at least one reaction of  the type Xi ~ Xs or X~ ---> Xj + Xs. Indeed, according 
to eqs. (10) and (13), the condition k(i, u, v) = 0 for all u, v ~ i leads to k(u, v, w) = 0 
for i E {v, w}. Hence, one particle X~z can be omitted in the kinetic scheme, and the 
case with n -  1 species can be considered. 

Obviously, the system (1 1) has non-zero solution X* if and only if  det K = 0. 
Suppose that det K ~ 0. Then det I~ is a polynomial in the variables k(u, v, w). For 
any S > 0 ,  there exist ~ ,w,  0 <  ¢5~,j~< S, such that d e t K ~ 0  after replacing all 
k(u,  v, w) by  k(u, v, w ) +  S~vw. For  these new k(u,  v, w),  we shall obta in  
X~ = XE = . . . =  X, = 0 and 09"= 0. Such a replacement is correct, since all the 
predictor variables xl . . . . .  xk and, hence, the rate constants can be experimentally 
determined only with the certain nonzero precision. Therefore, det K = 0. 

Using the same argument, we have F(u 1, v 1, u 2, ½ . . . . .  u,,, v n) = 0. Hence, 
all the rows of  the matrix F1 are linearly dependent, and rank F 1 < n - 1. Consequently, 
there exists #1, ]-12 . . . . .  ].In ~ R such that #2 + #~ + . . .  + #~ ~ 0 and 

I 
#1 

92 

#n 

= 0. (15) 

Since (9), (10) and (15) yield 

#lgXl(t) /~t  + 92~Xx(t)/~t + . . .  + #n~Xn(t)/gt =- O, 

the following equality holds: 

#lXl(t) + 92X2(t ) + . . .  + #nXn(t) - const. (16) 

This means that under our assumptions for the kinetic scheme, there exists at least 
one equation of  conservation constraint. Thus, there exists a set H c •", H ,  0, such 
that 

H = {(#1,92 . . . . .  #n) ~ R"I#IXI(t) + 92Xa(t) + -  • • + #~X,( t )  =- const}. 

H is called the 
structure of  the 

eH, H ~ on, we 

ai={ 1' 
0, 

concentration polyhedron, and it depends only on the topological 
kinetic scheme (graph). I7 is a linear space and it has a basis. By 
denote the vector (al ,  a~ . . . . .  an), where 

i f i E H ,  

i f i ~  H. 
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THEOREM 1 

For any concentration polyhedron H corresponding to the kinetic scheme of 
the first order with n species, there exists such basis enl en2 . . . . .  ent that Hi c~ Hj = 0 ,  
c a r d H i >  2, i , j =  1, 2 . . . . .  l, i ~ j ,  and H1 u H2 u .  . . u Htc_ crn. 

P r o o f  

Let  f =  (#1, #2 . . . . .  #,,) el-I,  f ~ 0  (see eqs. (15) and (16)). Denote  
Ao = { i l# i  = 0}. Without loss of  generality, assume that Ao = {s + 1, s + 2 . . . . .  n} 
(if Ao = ~ ,  then s = n). Let F2 be a matrix obtained from F1 by striking out the last 
n - s columns and, after that, by striking out all zero rows from the obtained matrix. 
Then, according to (15), 

r2 l 
#1 

~ 2  
= 0. (17) 

So, every row of  F2 has at least two non-zero elements. Let us consider the sum 

OXl(t)/Ot + OX2(t)/~t + . . .  + OXs(t)/Ot 

n n 

= ~ X i ( t )  ~.d k ( u , v , w ) S ( u , v , w ) .  (18) 
i=1 ie{u,v,w} 

Here, S(u, v, w)  is the sum of  the elements of  the row which corresponds to k(u, v, w)  
in matrix F 2. Hence, S(u, v, w) > O. Since lim~_~**OXi(t)/Ot = 0 and limt ~ . .Xi( t )  = ~ > 0, 
every S(u, v, w)  in eq. (18) is equal to zero. Consequently, every row in F2 has only 
two non-zero elements - 1  and 1. 

Let ill, f12 . . . . .  fir represent the distinct real numbers among #1, #2 . . . . .  #s. 
Denote C1 = {i I#i = ill}, C2 ----" {i I/z/= fiE} . . . . .  Cr = { i I1~ = fir}. Le t  )'u~ = - 1 ,  Tuw = 1 
for the uth row of  1-'2. Then (17) implies/zo = / ~  and, hence, there exists such j, 
1 < j _< r, that v, w ~ Cj. Let F j, 1 < j < r, be a matrix obtained from 1-'2 by retaining 
only the columns with indexes Cj. It is readily seen that every non-zero row in F j 
has only two non-zero elements - 1  and 1. Similarly to (18), it leads to 

~ X i ( t ) / O t  = O. 
iECj 

Hence, eq  , ec2 . . . . .  e c ,  ~ H ,  ca rdC />  2, C i n C j = O ,  i ~ j ,  and 

f = fllecl + fl2ec2 + . . .  + f l r ec .  (19) 

Note that 
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e q  + ec2 + .  • • + ec,  = e q u c = ~ . . . u c , ~  rI. 

Let rank H = 1. For every basis B of  H 

I1 = . . . . .  u . ' )  . . . . .  ¢ ;  = ( d ,  . . . . .  u ' ) ,  

(20) 

(21) 

we define a natural number 

N(B)  = ~a 1. 
l~ian, l<j~l 

#/~0 

Let (21) be a basis of  H with the minimal number N(B).  For every j, 1 _<j < l, the 
vector3~ can be expressed in the form (19). Let us assume that there exists such j, 
for example j = 1, for which r > 1. Then 

f l  =,131e& +132% + . . . + f l ~ e o ,  eo~ ~ II. 

The vectors f l , f 2  . . . . .  3] are linearly independent; therefore, for at least one i, 
1 < i _< r, the vectors eol,f2,f3 . . . . .  j~ are linearly independent. Hence, eoi,fE, f3 . . . . .  f t  
is a new basis B1 of  11, and N(B1) < N(B).  Consequent ly , f l  = Ote&, f2  = 02en2 . . . . .  
f t  = Oteni, where Oi ~ R, Oi ;~ O, H i ~ tY n, card H i > 2. Therefore, en,, en2 . . . . .  ent is 
a new basis B z of  H, and N(B2)= N ( B ) =  Y~{=tcardHi. To prove the theorem, it 
suffices to show that H i n H j = ~ ,  i , j =  1,2  . . . . .  n, i ~ j .  For convenience, we 
shall prove that HI c~ H2 = O. Suppose that H1 n HE = H ~ ~ .  Obviously,  HI ~ H2, 
since el~ ~ en2. If  H 1 = H, then en2\H~ = en2 - e14~ ~ H. So eI4: ea2xH ~ =eH 3 . . . . .  ent 
is a new basis of  B 3 of  P, and N(B3)< N(B2), i.e. a contradiction. Analogously,  
H E , H. Note that en~xn - en2\n = eth - ell2 E I1. e H ~  -- en2xt! can be expressed in the 
form (19); therefore, from (20) we find that 

eHx\H + eHzXH = e(HaXH)n(H2kH ) E 11. 

Hence, e~,lxn, en2xn ~ H and e n = enl - enl xn ~ H. Thus, en, en2, en3 . . . . .  en~ or 
en, xn, eH~, en3 . . . . .  ell, is a new basis B4 of  H, and N(B4) < N(B2), i.e. contradiction 
to the assumption H l t% H 2 * O is achieved. [] 

When t--+ oo, eq. (16) comes to 

fllX1 + 122X 2 + . . . .  ].tnX n = f l lXl(0)  + f12X2(0) + . . .  + ].lnXn(O ). 

Let rank H = 1. Applying theorem 1, we have 

~_~ X;  = Z Xj(O), i = 1 , 2  . . . . .  1. 
jeH~ jeH~ 

(22) 
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It is clear that rank F1 = n - 1. Let zl E HI, "rE ~ H2 . . . . .  "rt ~ Hr. After striking out 
the "rlth, "rE th . . . . .  and "rtth equations in system (11), we shall obtain (together with 
1 equations (22)) n - l + l = n linearly independent  equations. The obtained system 
of  linear equations can be easily solved. After substituting the obtained X~, into 
equation (12), we will obtain 

1 

o," = Z Z x j (o ) : i ( . . ,  k(u, ), (23) 
i=1  j e l l  I 

wheref i  depends only on the rate constants k(u, v, w). After substituting all the rate 
constants according to eq. (8), one will obtain the necessary QSA relationships. 

The case where l = 1 and H1 = o-n is identical to the kinetic schemes of  the 
cell-free enzyme catalyzed reactions which have been extensively investigated in 
the literature. A number  of different algebraic and graphical methods for deriving 
09* for these simplified kinetic schemes have been proposed [17-25] .  All these 
methods can be applied for deriving o9" in the general case also. 

3. Classification of all possible algebraic expressions for w* 

Let cr be a permutation of  the set o-n. If in expression (23) all Xj(O) are 
replaced by Xo~j)(O) and all k(u, v, w) are replaced by k(o-(u), min(o-(v), o-(w)), 
max(o-(v), o-(w))), a number  of  new rate functions co,~ will be obtained (here, 
o-(0) = 0, o-(n + 1) = n + 1). For the given kinetic scheme, this procedure will mean 
a simple renumeration of the species XI, X2 . . . . .  Xn; therefore, we will say that the 
functions to* and co~ are equivalent. Obviously, any given class of  such equivalent 
functions includes a function in the form of  e. (23), where HI = {1, 2 . . . . .  rl}, 
H 2 =  {r l +  1, r l + 2  . . . . .  r2} . . . . .  H i= {rt_ 1+ 1, rl_ l +  2 . . . . .  rt}, r t < n ,  
cardH1 > card HE > . . .  > cardHt > 2. 

For example, for the kinetic scheme defined by the reactions 

X1--+ X 4, X I - + 2 X  4, X2 -+ X 3, X3 -+ X 2, X3 --+ XI + X 2 ( n = 3 ) ,  

the following rate equation is obtained: 

co* = [x2 (0 )  + s3(o) ]  
k(2, 0, 3)k(3,1, 2) [k(1, 0, 4) + 2k(1, 4, 4)] 

[k(2, 0, 3) + k(3, 1, 2) + k(3, 0, 2)] [k(1, 0, 4) + k(1, 4, 4)]" 

If  we define o-(1) = 3, o-(2) = 1, o'(3) = 2, then 

• k(1, 0, 2)k(2, 1, 3) [k(3, 0, 4) + 2k(3, 4, 4)] , (24) 
°9° = [XI(0) + X2(0)] [k(1, 0, 2) + k(2,1, 3) + k(2, 0, 1)] [k(3, 0, 4) + k(3, 4, 4)] 

and the function ¢o~ corresponds to the kinetic scheme 
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x3 x4, x3 2x4, xl x2, x2 x2 xl + x3. 

If  the algebraic expression for oh3 (a~ ~: 0) is obtained from to* by replacing 
some of  the symbols k(u, v, w) with zeros, we will say that oh3 is simpler than to*. 
For example, in expression (24) let k(3, 4, 4) = 0. Then 

toO = [XI(O) + X2(O)] 
k(1, O, 2)k(2,1, 3) 

k(1, 0, 2) + k(2, 1, 3) + k(2, 0,1) 
(25) 

and expression (25) is simpler than (24). 
Denote by C1 to* the class of  algebraic expressions which contain all the 

expressions equivalent to to* and all the expressions which are simpler than any one 
of  them. For example, let n = 3 and 

to* = + x 2 ( 0 ) ]  
k(1, O, 2)k(2, 1, 3) [k(3, O, 4) + 2k(3, 4, 4)] 

[k(1, O, 2) + k(2, 1, 3)] [k(3, O, 4) + k(3, 4, 4)] 
(26) 

corresponds to the scheme X 1 ---> X2, X2 ---> X1 + X3, X --+ X4, X3 ---> 2X4. Then there 
are 6 = 3! expressions to~ equivalent to to*, where o" is a permutation of  the set 
{ 1, 2, 3 }. In accordance to each of these expressions, there are two simpler expressions. 

Let f~,~ be a set of  all possible algebraic expressions of  the rate equation to* 
for the kinetic schemes with no more than n species. 

THEOREM 2 

There are p(n) - 1 algebraic expressions to~, to~ . . . . .  top(n)-I corresponding 
to the kinetic schemes with n species, such that 

p(n)-I 
~ q , =  U Clto i. 

i=1 

Here, p(n) is the well-known function of  "partitions" in number theory. A partition 
of  n is a representation of  n as a sum of  any positive integral parts where the order 
of  parts is irrelevant. Thus, 2 = 1 + 1 has two partitions (i.e. p(2) = 2), 3 = 2 + 1 
= 1 + 1 + 1 has three partitions(p(3) = 3),4 = 3  + 1 = 2 + 2  = 2 +  1 + 1 = 1 + 1 + 1 + 1 
has five partitions (p(4) = 5), 5 = 4 + 1 = 3 + 2 = 3 +  1 + 1 = 2 + 2 +  1 = 2 +  1 + 1 + 1 
= 1 + 1 + 1 + 1 + 1 has seven partitions (p(5)  = 7), and so on. For example, p(200) 
= 3 972 999 029 388. For n ---> ~,, the following asymptotic formula holds [26]: 

p(n) 1 e ng,2aTj. 
4~/3n 

Proof 

Let to* be the algebraic expression corresponding to a given kinetic scheme 
with <n species, and H be the concentration polyhedron of  this scheme. Assume 
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that H = (e~l, ell2 . . . . .  eHt ) i.e. eh, ' , ell2 . . . . .  eHt is a basis of  H. Also, let 
H 0 = ael\Ui=lHi, where H1, H2 . . . . .  H l are def'med as above. Consider the "complete" 
kinetic scheme with the polyhedron H which includes all possible reactions of  the 
following forms: 

Xi --> X s, where i, s e H1; i, s e H2; . . . ;  i, s e H1; i e Ho , s  e Ho u {n + l}. 

X i--->2X s , w h e r e  i e H  0 , s e l l  0 U { n + l } ,  

X i - - - > X j + X  s, j , s ,  

where i, j e H  1 , s e l l  0 U { n + l } ;  i, j e H  2 , s e l l  o U { n + l } ;  . . . ; 

i, j e H l ,  S ~ H o u { n + l } ;  i e H o ,  j , s ~ H o u { n + l } .  

Then the following complete function corresponds to this complete scheme: 

l 

to*(Fl) = ~ ~ Xj(O)fic( . . . k(u, v, w)  . . . ). (27) 
i=1 j e l l  i 

By eliminating some of the reactions in the complete scheme, we can obtain every 
scheme with the concentration polyhedron H. Since the expression o9" still has the 
form (23), it can be obtained from (27) by replacing the proper rate constants 
k(u, v, w)  by zeros. Since card H1 > card H 2 > . . .  _> card Hi > 2 and Y'-I= i card Hi < n, 
the number of  different concentration polyhedrons equals q(2) + q(3) + . . .  + q(n). 
Here, q(m) is the number of representations of m as a sum of any integers from the 
set {2, 3, 4 . . . .  }. To prove the theorem, it remains to show that 

q(2) + q(3) + . . .  +q(n)  = p ( n ) -  1. (28) 

Define p (0 )=  1, q(0)= 1, q(0)= 0. It is well known that 

f l 1 - fC <n x  
u = l  1 - -  X u n = O  

(e.g. see ref. [26]). Analogously, 

= x ~m. = q(v )x  v. 
u=2 1 - x U  u = 2  m ~ = 0  v = 0  

Hence, 

p( n)xel = - x u = - 
e l=0  u = l  1 1 x = 1 - x  u 

- -  =  q< ,xo 
w---0 v = 0  

xel ~ q(v)  = ~ [q(0) + q(1) + q(2) + . . .  + q(n)]xel. 
el=0 V-I-w----el n----0 

V,w~O 
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Consequently, p(n)  = q(0) + q(1) + q(2) + . . .  + q(n) = 1 + q(2) + . . .  + q(n), and the 
equality (28) is proved. [] 

. Examples of the simplest rate equations and nonlinear quanti tat ive structure-  
activity relationships 

According to theorem 2, if one assumes that the drug action is modeled by 
the kinetic scheme which includes no more than two kinetically important compounds 
(species), then there exists one general kinetic equation which will describe all the 
particular mechanisms of  drug action. Indeed, according to the complete  scheme for 
n = 2 ,  

X1 kl )X 2, X 2 k2 )X 1, X l k3 )X 2 + X 3, X 2 k4 )X 1 + X 3, 

where k(1, 0, 2) = kl, k(2, 0, 1) = k2, k(1, 2, 3) = k3, k(2, 1, 3) = k4, the rate equation 
is obtained: 

to* = [XI(0) + X2(0)] k2k3 + klk4 + 2k3k4 (29) 
kl + k2 + k3 + k 4 

Analogously,  there exist only two general kinetic equations which will describe all 
possible kinetic schemes with n < 3. 

According to the first complete scheme 

Xl kl ) X 2 ,  X 2 k2 ) X I ,  X 1 k3 ) X 2  + X 3  ' X 1 k4 ) X 2  + X 4  ' 

X2 k5 ) X 1 + X 3, X 2 k'6 ) X 1 + X 4, X 3 k7 ) X 4, X 3 k8 ) 2 X  4, 

where k(1, 0, 2) = kb k(2, 0, 1) = k2, k(1, 2, 3) = k3, k(1, 2, 4) = k4, k(2, 1, 3) = ks, 
k(2, 1, 4) = k6, k(3, 0, 4) = k7, k(3, 4, 4) = ks, the rate equation is 

to* = [x~(o) + x2(0)] 

(k2k4 + k4k5 + 2k4k6 + kak6 + k3k~)(~ + ks) + (k2k3 + 2k3k 5 +/%k 6 + kak 5 + k4ks) (k. + 2~) 

(/q + G  +G +k, +ks + k~)(~ + ~) 

According to the second complete scheme 

Xl k I ) X2 ' Xl k~ ) X3 ' X2 k 3 )X1 ' X2 ' Xl k 4 ) X3 ' X3 k. 5 ) X l ,  

x3 k~ >X2, Xl k~ >X2+X4, X1 k~ >X3+X4, X2 k~ >X~+X4, 

X 2 ..... klo ) X  3 + X 4, X 3 kn ) X 1 + X 4, X 3 ki2 ) X  2 + X 4, 
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where k(1, O, 2) = kl, k(1, O, 3) = k2, k(2, O, 1) = k3, k(2, O, 3) = k4, k(3, O, 1) = ks, 
k(3, O, 2) = k6, k(1, 2, 4) = k7, k(1, 3, 4) = ks, k(2, 1, 4) = k9, k(2, 3, 4) = klo, 
k(3, 1, 4) = k11, k(3, 2, 4) = k12, the rate equation is 

co" = [x~(o) + x2(o)  + x3(o)] 

-(k~ +~2 +k7 +ks)  k3 +k9 ks +kl~ 
k~ + k7 -(k3 +/'4 + k9 +/,~0) k6 + k12 
k 7 + k  8 k 9 + klo kll + k12 

- (k~ + k2 + k7 + ks) k3 + k9 k5 + k~ 
kl +k  7 -(k3 +k4 +k9 +klo) k6 +kl2 

1 1 1 

k After substituting all the rate constants to exp{(ao(u, v, w)+ ~,i=lai(u, l), w)xi)ln 10} 
into the rate equations corresponding to the complete kinetic schemes, we will 
obtain the most general forms of the possible QSA relationships: 

co* = ~ ,  ~ Xj(O)fi c . . .  exp{(ao(u, v, w) + ~ ai(u, v, w)x  i) In 10} . . . .  (30) 
i=l j ~ t t  i i=1 

Here, Y~jeMiXj(O) and all ai, i = 0 . . . . .  k, represent a set of nonlinear regression 
coefficients, and all xi, i = 1 . . . . .  k, represent a set of variables parameters. 

Note that the drug biological potency should normally be measured by the 
net rate of biological responses co* caused by the constant drug initial concentration 
in the administration phase XD(O), rather than by the variable drug concentration 
initiating the constant rate of biological response, i.e. EDso, LD5o, MIC, MBC, etc. 
The point is that if one wishes to vary the initial substrate concentration XD(0), then 
one must take into account that it may be included in any of the first-order rate 
constants. Hence, the necessary QSA relationships in the form of explicit algebraic 
expressions for the dose-response correlations will be obtained after the following 
transformations of eq. (30): 

(i) substitute the variable co* for the constant representing standard biological 
response; 

(ii) substitute the proper coefficient(s) ao(u, v, w) for the XD(O)a~(u, V, w), 
where a;(u, v, w) is the drug concentration-independent coefficient; 

(iii) solve the obtained algebraic equation with respect to the variable XD(0). 

After accounting for all possible changes in (ii), we will obtain many more 
types of possible QSARs than follows from the classification according to theorem 
2. In addition, many of the obtained equations will be unsolvable in the explicit 
form with respect to XD(0). 
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It is easy to show that the most widely used bilinear equation represents the 
particular case of  the general QSA relationship which is in  accordance with the 
kinetic scheme with n = 2. Indeed, assuming that in expression (29) k2 = k3 = 0, 
kl = 10 ~1+'2~, and k4 = 10 ~3+''~, we obtain 

[ 1 
log(1/(o*) = log Xl(0) + X2(0) 

= - logtX,(O) + X2(O)] + log (10 - ' ' - ' '2x  + 10 -a3-a4x) 

= -log[Xl(O) + X2(O)] - a 1 - a2x + log (1 + 10 a'-a3+(a2-a')x) 

= C O + ClX + log(1 + loc2+Gx), (31) 

where Co = - log[Xl(0)  + X2(0)] - al, C1 = -a2 ,  C2 = al - a3, 6'3 = a2 - a4. Expression 
(31) was shown to be identical to the bilinear equation (2) from the viewpoint of  
practical use [10]. 

Assuming that in expression (29) k4= 0, kl = 10 a~+a2x, k 2 =  10 aS+a6x, and 
k 3 = 10 aT+asx, we obtain 

log(1 [ to*) = log XI(0) + X2(0) k2k3 k2  

= - log[Xl(O ) + X2(O)] + log(lOal-as-aT+(a2-a6-aa) x + lO-as-a6 x + 10 -aT-asx) 

= C O + Clx + log(1 + 10 C2+Gx + loG+Csx), (32) 

where Co = - log[Xl(0)  + X2(0)] + al - as - a7, C1 = a 2 -  a6 - a8, C2 = - al + a7, C3 
= - a 2  + as, (74 = - a l  + as, C5 = - a 2  + a6. Under the proper values of  al . . . . .  a8, 
expression (32) will describe the structure-activity plots with three linear or curvilinear 
ascending and descending parts. Analogously, it can be readily shown that the 
proper kinetic schemes with n elementary reactions will give all the other practically 
observed n-portion structure-act ivi ty dependencies described in the introduction. 

5. Discussion and conclusions 

How can one establish the minimal kinetic scheme and, hence, the simplest 
QSA relationship which will certainly describe the experimental data on biological 
activities? This problem cannot be solved by fitting the experimental data into a 
single s t ructure-act ivi ty  equation, since a priori drug action mechanism is never 
known. An ideal algorithm for establishing the necessary QSA relationships should 



130 A.K. Dubickas,  A~A. Petrauskas, Linear f r ee  energy principle 

imply sequential fitting of experimental data to all possible SA equations with 
subsequent comparison of the obtained statistical results. Since most of the so far 
correlated biological data were satisfactorily fitted to the empirical "n-portion"-type 
functions (see section 1), one may hope that in most cases the drug action can be 
modeled by the rather simple kinetic schemes. Therefore, according to theorem 2, 
there can be only a limited number of probable structure-activity functions. Assuming 
that the kinetic regularities of drug action accomplish our assumptions, one could 
apply the logical algorithm described in scheme 1. Here,  cons denotes the 
function (30) which is in accordance with the gth complete kinetic scheme with n 

Fit of experimental data n~n+l, g=l 

to complete function tog n I~g-g+~ 

J Y e s  

Finish 

Scheme 1. The principal scheme for establishing QSA relationships. 

intemal species X1, X2 . . . . .  Xn. Since our aim is to find the "minimal" function 
describing the biological data within the experimental precision limits, it should be 
reasonable to start analysis from the simplest complete schemes, i.e. with n = 2. For 
any fixed number n, one should have to analyze p(n) - 1 different complete functions. 
The currently fitted function should be considered to be statistically reliable if for 
any ith data point the following inequality is satisfied: 

I co7 * -- (l)ngil < e. 

CO i 

Here, to~ and O)ng i represent, respectively, the experimentally obtained and predicted 
by the ngth function activities of the ith compound, and e is the experimental error. 

We believe that such a logical algorithm could serve as a basis for the 
systematic analysis of biological data, providing a new level for the understanding 
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of drug action. However, its real application in practice will be constrained by a 
number of fundamental problems which, up to the present, remain unsolved. 

First, the problem of deriving the complete set of substrate predictor variables 
still needs to be solved. All the presently used substrate parameter sets proved to 
be valid only in the isotropic homogeneous phases, while in the active sites of 
biological receptors, various local interactions may dominate. This should mean 
that the correct parameters xl . . . . .  xk should be dependent on 3D space coordinates. 
Consequently, the complete set of substrate predictor variables may appear to be 
very large. Therefore, only compounds with slightly varied structures could be 
included in the correlation set. 

Second, the problem of collinearity of predictor variables, i.e. the existence 
of relationships 

xi  = F i ( x l  . . . . .  x i _ l ,  xi+ l . . . . .  xk) ,  

will necessarily arise. 
In order to solve these problems and to obtain statistically reasonable results, 

one should operate with a sufficiently large body of experimental data. In addition, 
the required QSAR model which will describe the biological data within the 
experimental precision could be achieved only after consecutive fitting of experimental 
data to a number of complex nonlinear functions. All this will take a large amount 
of computer calculation time. 

Of course, at present the above-mentioned difficulties can hardly be fully 
overcome; however, if the pharmaceutical chemists dream of solving the QSAR 
problem based on analyses of drug action mechanisms at the molecular level, they 
will have to do this. 
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